TEORIA DE COLAS

 TEORIA DE COLAS



Introducción a la Teoría de Colas

 

En muchas ocasiones en la vida real, un fenómeno muy común es la formación de colas o líneas de espera. Esto suele ocurrir cuando la demanda real de un servicio es superior a la capacidad que existe para dar dicho servicio. Ejemplos reales de esa situación son: los cruces de dos vías de circulación, los semáforos, el peaje de una autopista, los cajeros automáticos, la atención a clientes en un establecimiento comercial, la avería de electrodomésticos u otro tipo de aparatos que deben ser reparados por un servicio técnico, etc.

 

Todavía más frecuentes, si cabe, son las situaciones de espera en el contexto de la informática, las telecomunicaciones y, en general, las nuevas tecnologías. Así, por ejemplo, los procesos enviados a un servidor para ejecución forman colas de espera mientras no son atendidos, la información solicitada, a través de Internet, a un servidor Web puede recibirse con demora debido a congestión en la red o en el servidor propiamente dicho, podemos recibir la señal de líneas ocupadas si la central de la que depende nuestro teléfono móvil está colapsada en ese momento, etc.

 

Origen:

 

El origen de la Teoría de Colas está en el esfuerzo de Agner Kraup Erlang (Dinamarca, 1878 - 1929) en 1909 para analizar la congestión de tráfico telefónico con el objetivo de cumplir la demanda incierta de servicios en el sistema telefónico de Copenhague. Sus investigaciones acabaron en una nueva teoría denominada teoría de colas o de líneas de espera. Esta teoría es ahora una herramienta de valor en negocios debido a que un gran número de problemas pueden caracterizarse, como problemas de congestión llegada-salida.

 

Modelo de formación de colas.

 

En los problemas de formación de cola, a menudo se habla de clientes, tales como personas que esperan la desocupación de líneas telefónicas, la espera de máquinas para ser reparadas y los aviones que esperan aterrizar y estaciones de servicios, tales como mesas en un restaurante, operarios en un taller de reparación, pistas en un aeropuerto, etc. Los problemas de formación de colas a menudo contienen una velocidad variable de llegada de clientes que requieren cierto tipo de servicio, y una velocidad variable de prestación del servicio en la estación de servicio.

 

Cuando se habla de líneas de espera, se refieren a las creadas por clientes o por las estaciones de servicio. Los clientes pueden esperar en cola simplemente por que los medios existentes son inadecuados para satisfacer la demanda de servicio; en este caso, la cola tiende a ser explosiva, es decir, a ser cada vez mas larga a medida que transcurre el tiempo. Las estaciones de servicio pueden estar esperando por que los medios existentes son excesivos en relación con la demanda de los clientes; en este caso, las estaciones de servicio podrían permanecer ociosas la mayor parte del tiempo. Los clientes puede que esperen temporalmente, aunque las instalaciones de servicio sean adecuadas, por que los clientes llegados anteriormente están siendo atendidos. Las estaciones de servicio pueden encontrar temporal cuando, aunque las instalaciones sean adecuadas a largo plazo, haya una escasez ocasional de demanda debido a un hecho temporal. Estos dos últimos casos tipifican una situación equilibrada que tiende constantemente hacia el equilibrio, o una situación estable.

 

En la teoría de la formación de colas, generalmente se llama sistema a un grupo de unidades físicas, integradas de tal modo que pueden operar al unísono con una serie de operaciones organizadas. La teoría de la formación de colas busca una solución al problema de la espera prediciendo primero el comportamiento del sistema. Pero una solución al problema de la espera consiste en no solo en minimizar el tiempo que los clientes pasan en el sistema, sino también en minimizar los costos totales de aquellos que solicitan el servicio y de quienes lo prestan.

 

La teoría de colas incluye el estudio matemático de las colas o líneas de espera y provee un gran número de modelos matemáticos para describirlas.

 

 



 

 

Se debe lograr un balance económico entre el costo del servicio y el costo asociado a la espera por ese servicio

 

La teoría de colas en sí no resuelve este problema, sólo proporciona información para la toma de decisiones

 

Objetivos de la Teoría de Colas

 

Los objetivos de la teoría de colas consisten en:

 

·        Identificar el nivel óptimo de capacidad del sistema que minimiza el coste global del mismo.

·        Evaluar el impacto que las posibles alternativas de modificación de la capacidad del sistema tendrían en el coste total del mismo.

·        Establecer un balance equilibrado (“óptimo”) entre las consideraciones cuantitativas de costes y las cualitativas de servicio.

·         Hay que prestar atención al tiempo de permanencia en el sistema o en la cola: la “paciencia” de los clientes depende del tipo de servicio específico considerado y eso puede hacer que un cliente “abandone” el sistema.

 

 

Elementos existentes en un modelo de colas

 

Fuente de entrada o población potencial: Es un conjunto de individuos (no necesariamente seres vivos) que pueden llegar a solicitar el servicio en cuestión. Podemos considerarla finita o infinita. Aunque el caso de infinitud no es realista, sí permite (por extraño que parezca) resolver de forma más sencilla muchas situaciones en las que, en realidad, la población es finita pero muy grande. Dicha suposición de infinitud no resulta restrictiva cuando, aún siendo finita la población potencial, su número de elementos es tan grande que el número de individuos que ya están solicitando el citado servicio prácticamente no afecta a la frecuencia con la que la población potencial genera nuevas peticiones de servicio.

 

Cliente: Es todo individuo de la población potencial que solicita servicio. Suponiendo que los tiempos de llegada de clientes consecutivos son 0<t1<t2<..., será importante conocer el patrón de probabilidad según el cual la fuente de entrada genera clientes. Lo más habitual es tomar como referencia los tiempos entre las llegadas de dos clientes consecutivos:  consecutivos: clientes consecutivos: T{k} = tk - tk-1,  fijando su distribución de probabilidad. Normalmente, cuando la población potencial es infinita se supone que la distribución de probabilidad de los Tk (que será la llamada distribución de los tiempos entre llegadas) no depende del número de clientes que estén en espera de completar su servicio, mientras que en el caso de que la fuente de entrada sea finita, la distribución de los Tk variará según el número de clientes en proceso de ser atendidos.

 

Capacidad de la cola: Es el máximo número de clientes que pueden estar haciendo cola (antes de comenzar a ser servidos). De nuevo, puede suponerse finita o infinita. Lo más sencillo, a efectos de simplicidad en los cálculos, es suponerla infinita. Aunque es obvio que en la mayor parte de los casos reales la capacidad de la cola es finita, no es una gran restricción el suponerla infinita si es extremadamente improbable que no puedan entrar clientes a la cola por haberse llegado a ese número límite en la misma.

 

Disciplina de la cola: Es el modo en el que los clientes son seleccionados para ser servidos. Las disciplinas más habituales son:

 

La disciplina FIFO (first in first out), también llamada FCFS (first come first served): según la cual se atiende primero al cliente que antes haya llegado.

 

La disciplina LIFO (last in first out), también conocida como LCFS (last come first served) o pila: que consiste en atender primero al cliente que ha llegado el último.

 

La RSS (random selection of service), o SIRO (service in random order), que selecciona a los clientes de forma aleatoria.

 

Mecanismo de servicio: Es el procedimiento por el cual se da servicio a los clientes que lo solicitan. Para determinar totalmente el mecanismo de servicio debemos conocer el número de servidores de dicho mecanismo (si dicho número fuese aleatorio, la distribución de probabilidad del mismo) y la distribución de probabilidad del tiempo que le lleva a cada servidor dar un servicio. En caso de que los servidores tengan distinta destreza para dar el servicio, se debe especificar la distribución del tiempo de servicio para cada uno.

 




 


 

La cola, propiamente dicha, es el conjunto de clientes que hacen espera, es decir los clientes que ya han solicitado el servicio pero que aún no han pasado al mecanismo de servicio.

 

El sistema de la cola: es el conjunto formado por la cola y el mecanismo de servicio, junto con la disciplina de la cola, que es lo que nos indica el criterio de qué cliente de la cola elegir para pasar al mecanismo de servicio. Estos elementos pueden verse más claramente en la siguiente figura:

 



 

 

Un modelo de sistema de colas debe especificar la distribución de probabilidad de los tiempos de servicio para cada servidor.

 

La distribución más usada para los tiempos de servicio es la exponencial, aunque es común encontrar la distribución degenerada o determinística (tiempos de servicio constantes) o la distribución Erlang (Gamma).

 

Notación de Kendall

 

Por convención los modelos que se trabajan en teoría de colas se etiquetan

 


 

Las distribuciones que se utilizan son:

 

• M: Distribución exponencial (markoviana)

• D : Distribución degenerada (tiempos constantes)

• E k : Distribución Erlang

• G : Distribución general

 

M / M / s : Modelo donde tanto los tiempos entre llegada como los tiempo de servicio son exponenciales y se tienen s servidores.

 

M / G / 1: Tiempos entre llegada exponenciales, tiempos de servicio general y 1 sólo servidor

 

Terminología

 

Usualmente siempre es común utilizar la siguiente terminología estándar:

 

• Estado del sistema : Número de clientes en el sistema.

 

• Longitud de la cola: Número de clientes que esperan servicio.

 

• N(t) : Número de clientes en el sistema de colas en el tiempo t (t ³0).

 

• Pn (t): Probabilidad de que exactamente n clientes estén en el sistema en el tiempo t, dado el número en el tiempo cero.

 

• s : Número de servidores en el sistema de colas.

 

l n : Tasa media de llegadas (número esperado de llegadas por unidad de tiempo) de nuevos clientes cuando hay n clientes en el sistema.

 

mn : Tasa media de servicio para todo el sistema (número esperado clientes que completan su servicio por unidad de tiempo) cuando hay n clientes en el sistema.

 

Nota: mn representa la tasa combinada a la que todos los servidores ocupados logran terminar sus servicios

 

l n: Cuando l n  es constante para toda n

 

mn : Cuando mn es constante para toda n ³ 1

   

 

1

 

 

Tiempo entre llegadas

 

 

l

esperado

 

 

 

 

 

 

 

 

 


 

 

1

 

 

Tiempo entre llegadas

 

 

m

esperado

 

 

 

 

 

 

 

 

Ejemplo:

 

Sea l = 3 personas / hora

 

 

 

1

 

 

 

 

 

 

1 hora

 

 

l

 

3

 

 

 

 

 

 

= 20 minutos

 

 

 

 

 

 

r: factor de utilización para la instalación se servicio (fracción esperada de tiempo fue los servidores individuales están ocupados).

 

 

r =

 

l

sm

 

 

 

 

 

 

También puede interpretarse como número promedio de personas siendo atendidas.


BIBLIOTECA DIGITAL UNAM


1 Teoria de colas ejercicios resuelto nivel básico INVESTIGACIÓN OPERATIVA + TEORIA PROBLEMA BASICO - YouTube

Comentarios

Entradas populares de este blog

PRINCIPALES DOCUMENTOS USADOS EN UN ALMACÉN

TIPOS DE CARGA Y SU NATURALEZA

Factor de Estiba - Flete